Uniparental inheritance and replacement of mitochondrial DNA in Neurospora tetrasperma.

نویسندگان

  • S B Lee
  • J W Taylor
چکیده

This study tested mechanisms proposed for maternal uniparental mitochondrial inheritance in Neurospora: (1) exclusion of conidial mitochondria by the specialized female reproductive structure, trichogyne, due to mating locus heterokaryon incompatibility and (2) mitochondrial input bias favoring the larger trichogyne over the smaller conidium. These mechanisms were tested by determining the modes of mitochondrial DNA (mtDNA) inheritance and transmission in the absence of mating locus heterokaryon incompatibility following crosses of uninucleate strains of Neurospora tetrasperma with trichogyne (trichogyne inoculated by conidia) and without trichogyne (hyphal fusion). Maternal uniparental mitochondrial inheritance was observed in 136 single ascospore progeny following both mating with and without trichogyne using mtDNA restriction fragment length polymorphisms to distinguish parental types. This suggests that maternal mitochondrial inheritance following hyphal fusions is due to some mechanism other than those that implicate the trichogyne. Following hyphal fusion, mutually exclusive nuclear migration permitted investigation of reciprocal interactions. Regardless of which strain accepted nuclei following seven replicate hyphal fusion matings, acceptor mtDNA was the only type detected in 34 hyphal plug and tip samples taken from the contact and acceptor zones. No intracellular mtDNA mixtures were detected. Surprisingly, 3 days following hyphal fusion, acceptor mtDNA replaced donor mtDNA throughout the entire colony. To our knowledge, this is the first report of complete mitochondrial replacement during mating in a filamentous fungus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transmission of mitochondrial deoxyribonucleic acid in Neurospora crassa sexual crosses.

Neurospora crassa mitochondrial deoxyribonucleic acid shows strict uniparental inheritance in sexual crosses, with a notable absence of mixtures and recombinant types that appear frequently in heteroplasmons.

متن کامل

Mitochondrial DNA Mutations, Pathogenicity and Inheritance

Mitochondria contain their own DNA (mtDNA), which codes for 13 proteins (all subunits of the respiratory chain complexes), 22 tRNAs and 2 rRNAs. Several mtDNA point mutations as well as deletions have been shown to be causative in well-defined mitochondrial disorders. A mixture of mutated and wild type mtDNA (heteroplasmy) is found in most of these disorders. Inheritance of mtDNA is maternal, a...

متن کامل

Prezygotic and Postzygotic Control of Uniparental Mitochondrial DNA Inheritance in Cryptococcus neoformans

UNLABELLED Uniparental inheritance of mitochondrial DNA is pervasive in nonisogamic higher eukaryotes during sexual reproduction, and postzygotic and/or prezygotic factors are shown to be important in ensuring such an inheritance pattern. Although the fungus Cryptococcus neoformans undergoes sexual production with isogamic partners of opposite mating types a and α, most progeny derived from suc...

متن کامل

Mechanisms of Uniparental Mitochondrial DNA Inheritance in Cryptococcus neoformans

In contrast to the nuclear genome, the mitochondrial genome does not follow Mendelian laws of inheritance. The nuclear genome of meiotic progeny comes from the recombination of both parental genomes, whereas the meiotic progeny could inherit mitochondria from one, the other, or both parents. In fact, one fascinating phenomenon is that mitochondrial DNA in the majority of eukaryotes is inherited...

متن کامل

Massive Changes in Genome Architecture Accompany the Transition to Self-Fertility in the Filamentous Fungus Neurospora tetrasperma

A large region of suppressed recombination surrounds the sex-determining locus of the self-fertile fungus Neurospora tetrasperma. This region encompasses nearly one-fifth of the N. tetrasperma genome and suppression of recombination is necessary for self-fertility. The similarity of the N. tetrasperma mating chromosome to plant and animal sex chromosomes and its recent origin (<5 MYA), combined...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Genetics

دوره 134 4  شماره 

صفحات  -

تاریخ انتشار 1993